Gene editing for dystrophies

Pursuit of a novel, highly specific, personalised strategy.

Gene editing for dystrophies
Cheryl Guttman Krader
Cheryl Guttman Krader
Published: Monday, September 30, 2019
A new personalised CRISPR gene-editing approach could offer a new avenue in the treatment of inherited corneal dystrophies, according to research reported at the 2019 annual meeting of the Association for Research in Vision and Ophthalmology (ARVO) in Vancouver, Canada. The majority of inherited corneal dystrophies, including transforming growth factor-β-induced (TGFBI) corneal dystrophies, are caused by dominant-negative mutations. In the case of TGFBI corneal dystrophies, more than 70 different TGFBI mutations have been described to date. Successful gene therapy for such genetic diseases where haploinsufficiency is not an issue requires a mutant allele-specific silencing approach, with one guide specific for each mutation. Having shown that “conventional” CRISPR/Cas9 gene editing is able to target less than half of the TGFBI mutations and also lacks sufficient specificity to secure gene editing of the mutant allele only, researchers at Ulster University, Northern Ireland, and Avellino Labs, California, US, went on to develop a novel allele-specific CRISPR approach to target all TGFBI mutations. M Andrew Nesbit, PhD, Senior Lecturer in Molecular Biology at the Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, described the work being carried out by the Ulster team and discussed its broader application to autosomal dominantly inherited genetic diseases. The research is being led by Professor Tara Moore, Professor of Personalised Medicine, Ulster University. Their approach is a “catch all” or “all in one” method in which a dual cut is made at two sites that flank a number of mutations. “With this approach we are able to provide Avellino Labs, our industrial partner, with a more commercially realistic approach to gene therapy with a significantly reduced number of guides requiring regulatory approval and clinical trial authentication. Through our continued research efforts, we are now able to simultaneously target a number of mutations with one therapeutic guide,” Dr Nesbit explained. Applying the technique on the DNA of a patient with R124H Avellino corneal dystrophy showed it provided efficient and specific gene editing. Looking at how well the dual-cut approach worked, the researchers found it could make deletions as large as tens of kilobases. Yet the results indicated that even with the allele-specific method, special care needs to be taken to avoid potential off-target effects. Use of the CIRCLE-seq technique to define the on- and off-target effects of the editing showed that the on-target site was detected with a high read count in all samples. However, a number of potential off-target sites were also identified, some of which were confirmed in the patient’s cell line. “We believe, however, that our dual-cut CRISPR mutation deletion approach will minimise these risks because it requires cutting of two nearby sites before any gene editing takes place,” Dr Nesbit said. CRISPR-Cas9 uses the CRISPR-associated protein 9 enzyme to snip complementary strands of DNA, allowing for very specific gene editing. CRISPR is an abbreviation for clustered regularly interspaced short palindromic repeats. M Andrew Nesbit: a.nesbit@ulster.ac.uk
Tags: dystrophies
Latest Articles
Organising for Success

Professional and personal goals drive practice ownership and operational choices.

Read more...

Update on Astigmatism Analysis

Read more...

Is Frugal Innovation Possible in Ophthalmology?

Improving access through financially and environmentally sustainable innovation.

Read more...

From Concept to Clinic

Partnerships with academia and industry promote innovation.

Read more...

Making IOLs a More Personal Choice

Surgeons may prefer some IOLs for their patients, but what about for themselves?

Read more...

Need to Know: Higher-Order Aberrations and Polynomials

This first instalment in a tutorial series will discuss more on the measurement and clinical implications of HOAs.

Read more...

Never Go In Blind

Novel ophthalmic block simulator promises higher rates of confidence and competence in trainees.

Read more...

Simulators Benefit Surgeons and Patients

Helping young surgeons build confidence and expertise.

Read more...

How Many Surgeries Equal Surgical Proficiency?

Internet, labs, simulators, and assisting surgery all contribute.

Read more...

Improving Clinical Management for nAMD and DME

Global survey data identify barriers and opportunities.

Read more...