ESCRS - Innovative Corneal Imaging Device ;
ESCRS - Innovative Corneal Imaging Device ;

Innovative Corneal Imaging Device

Prototype shows rich potential of high-resolution aberrometry

Innovative Corneal Imaging Device
Dermot McGrath
Dermot McGrath
Published: Thursday, June 1, 2023

Dermot McGrath reports

A novel high-resolution device capable of performing reli­able, precise measurements of ocular aberrations could potentially lead to new screening or follow-up methods for patients with keratoconus or other corneal diseases, accord­ing to Mr Gonzalo Velarde-Rodríguez.

“The ocular aberrations measured by this device are reli­able, precise, and well correlated with the corneal aberrations. Furthermore, the extraordinary high-resolution measurements revealed micro-alterations in the wavefront phase of keratoco­nus patients that varied with the disease stage,” he said.

Typically, keratoconus cases are detected in clinical practice using the slit lamp or classified using topography or aberrom­etry devices, usually based on Hartmann-Shack technology.

However, these approaches have limitations, with Hart­mann-Shack devices, for instance, restricted to sampling the phase map at up to 2,600 measurement points within the pu­pil, or approximately 175 μm of lateral resolution for a 9-mm pupil diameter. This constrains its usefulness in abnormal eyes, which are precisely the most interesting to characterise, he noted.

The aberrometer prototype (t-eyede, Wooptix) was developed originally for the astrophysics field with sensors capable of detecting propagating light waves. The wavefront phase imaging (WFPI) sensor allows the user to acquire millions of data points within the pupil of the human eye with a lateral resolution of 8.55 μm, which is several orders of magnitude higher than current industry standard oph­thalmic devices.

Mr Velarde-Rodríguez’s cross-sectional study included 43 eyes from 25 healthy patients and 43 from 27 keratoconus patients analysed by a corneal tomography system and the aberrometer prototype. Corneal aberration values were pro­vided by the tomography device and compared with ocular aberration scores obtained from intensity images captured by the t-eyede device.

“We wanted to use the prototype to measure real patients, including healthy and highly aberrated eyes, and to compare the corneal and ocular optical aberrations,” he said. “We also set out to study the small details of the ocular wavefront be­cause of the huge lateral resolution of this device.”

The results showed all ocular and corneal optical aberra­tions were statistically significantly higher in the keratoconus group than in the control group.

“As we expected, keratoconus and healthy eyes were different. Keratoconus eyes have higher amounts of coma but also higher amounts of astigmatism and higher-order aberrations. The ocular and corneal aberrations were also different for keratoconus eyes, especially for astigmatism and coma,” he said.

Analysing the ocular wavefront using the high pass filter map helped obtain the two main patterns.

“The first pattern we identified as ‘smooth,’ with around 95% of the healthy eyes belonging to that group,” Mr Velarde-Rodrí­guez explained. “However, we found another pattern that we call ‘rough’, and 77% of the keratoconus eyes belonged to that group. It also seems like the disease severity played a role in the resulting pattern, as more advanced stage 3 and 4 keratoconus eyes were more likely to show this rough pattern.”

The study did have some limitations, he added.

“We made the analysis using a 3-mm pupil because the larger pupils are prone to fail,” he said. “Also, the wavefront micro-alterations are detected in the ocular wavefront, and we cannot distinguish between corneal and lens contributions in those alterations.”

Mr Velarde-Rodríguez gave this presentation at the 27th ESCRS Winter Meeting in Vilamoura, Portugal.

Gonzalo Velarde-Rodríguez OD, MSc is an R & D r esearcher at the Jiménez Díaz University Hospital in Madrid, Spain.

Latest Articles
Getting a Clearer View of a High-Tech Future

Addressing the challenges to adopting new technologies in cataract and refractive surgery.


ESCRS Wins Award for Website Excellence


Learning From the Experience of Others

Business skills can help young ophthalmologists make better practice decisions.


Research Awards Drive Quest for Better Patient Care


IOL Match is a Surgeon’s Helping Hand

A free app for iOS and Android to enhance the patient care journey.


Robot-guided Cataract Surgery

Researchers encouraged by technical performance in early testing.


Sizing up for Successful Surgery

Challenges for sizing short eyes include IOL calculation and selection.


Saving Sight on the Frontlines

Ukrainian ophthalmologists hone in on common injuries they see, techniques to provide the best care, and the challenges that remain.


Keratoconus Screening in Children with Down Syndrome

Early screening leads to early intervention.


Revolutionising Retinal Imaging

The rise of AI in ophthalmic practice follows a steep trajectory.