Misconceptions and Misinterpretations in Corneal Topography

Cynthia Roberts, Ph.D.
Professor of Ophthalmology and Biomedical Engineering
Martha C. and Milton S. Staub Chair for Research in Ophthalmology
The Ohio State University

Milan, 2012
ESCRS

Surface Representations

- Axial
 - Average representation of surface curvature
- Tangential (also Meridional)
 - Local representation of surface curvature
- Elevation
 - Relative to a reference
- Optical (Snell) Power (also Refractive)
 - Image formation

Misconceptions

- Topography vs Wavefront
- Elevation vs Curvature
- Axial vs Tangential Curvature
- Power vs Curvature
- “Bumps” on a Posterior Power Map?

Why do I need Corneal Topography when Wavefront Analysis Measures the Entire Eye?

Because Refractive Surgery Alters the CORNEA!

100% of Induced Aberrations are from the CORNEA!
Wavefront vs Topography

Wavefront tells you the origin and destination

Shape (topography) tells you the mechanism

Wavefront cannot provide the location of an aberration-producing feature

Example: COMA

Is the origin of 3rd order coma a central or peripheral feature?

Coma is nonspecific

Misconceptions

• Topography vs Wavefront
• Elevation vs Curvature
• Axial vs Tangential Curvature
• Power vs Curvature
• “Bumps” on a Posterior Power Map?

Elevation

• Anterior or Posterior Surface

• Requires a Reference
 – Relative height
 – Can be compared to a plane
 – Can be compared to a sphere
 – Can be compared to an asphere

• “Best-fit” sphere is most often chosen

Why Does BFS Vary in Same Patient?

• Depends on the Region over which the BFS is Fit!
 – On a normal eye, the smaller the region, the greater curvature of the BFS since corneas tend to have greater curvature in the center

• If missing data are different from exam to exam, then data used for calculation are different and BFS will also be different
Height relative to a plane reference

What conditions?

Plane Reference

Best-Fit Sphere Reference

Elevation relative to “Best-Fit” Sphere

- Central “High” point
 - Steeper than the sphere
- Peripheral “High” point
 - Flatter than the sphere
- Central “low” point (negative number)
 - Flatter than the sphere — NOT A CONCAVITY still highest spot on cornea
- Peripheral “low” point
 - Steeper than the sphere
Misconceptions

• Topography vs Wavefront
• Elevation vs Curvature
• Axial vs Tangential Curvature
• Power vs Curvature
• “Bumps” on a Posterior Power Map?

Refractive Power

• Incoming light rays are refracted by the first surface
• The angle of refraction is dependent on the incoming angle of incidence

Power vs Curvature for a Sphere and two Ellipses

Optical power
Axial dipters
Tangential Curvature

Power and Curvature are directly proportional

Total Corneal Power derived from anterior and posterior corneal surfaces

• Ray Tracing through BOTH surfaces
 – Snell’s Law Refraction:

Optical power
Axial dipters
Tangential Curvature

Power and Curvature are directly proportional

ONLY in the central paraxial region

Misconceptions

• Topography vs Wavefront
• Elevation vs Curvature
• Axial vs Tangential Curvature
• Power vs Curvature
• “Bumps” on a Posterior Power Map?
Retrospective Study of Post-Op Shape

- 2,380 myopic LASIK patients with pre-op and 6 month post-op Orbscan Topography
- Technolas 217 excimer laser
 - “Optical Zone” sizes from 5.0 to 6.5mm diameter
 - Transition zones extended to 9mm diameter
- Hansatome or Automated Corneal Shaper Microkeratome
- Collaborators: Dr. John Chang and the refractive surgery team of the Hong Kong Sanatorium and Hospital

Average Posterior Difference Maps for Entire Population

- n = 2,380
- All regions show statistically significant differences from pre-operative state.

Average Posterior Difference Maps Myopic Correction < 2 Diopters

- n = 25
- For elevation and tangential curvature, only the intermediate regions were significantly different from pre-op

Average Posterior Difference Maps Myopic Correction from 2 to 4 D

- n = 321
- All regions except inner elevation and intermediate axial zones show statistically significant differences from pre-operative state.

Average Posterior Difference Maps Myopic Correction from 4 to 6 D

- n = 635
- All regions show statistically significant differences from pre-operative state.

Average Posterior Difference Maps Myopic Correction from 6 to 8 D

- n = 622
- All regions show statistically significant differences from pre-operative state.
Average Posterior Difference Maps
Myopic Correction from 8 to 10 D

- n = 465
- All regions show statistically significant differences from pre-operative state.

Data acquired at the Hong Kong Sanatorium and Hospital

Average Posterior Difference Maps
Myopic Correction for > 10 Diopters

- n = 311
- All regions except outer pachymetry zone show statistically significant differences from pre-operative state.

Data acquired at the Hong Kong Sanatorium and Hospital

Interpretation of Increased Posterior Curvature after Refractive Surgery

- 3 models of increased posterior curvature were compared with actual patient posterior topography
- 2,380 patients with pre-op and 6 month post-op Orbscan topography (Hong Kong Sanatorium and Hospital)
- Pre-op subtracted from corresponding post-op, and all difference maps averaged for each of 3 fitting protocols

Central Decompensation?

Forward Vault?

Inward Peripheral Movement?
How would these surfaces appear if fit and subtracted?

It depends on the fitting protocol used!!

Pre and Post-Op Surfaces Fit over Entire Region of Interest

• Most common default of the Orbscan
• Surfaces fit above and below each other

Pre and Post-Op Surfaces Fit over Entire Region of Interest

• Average difference map of 2380 LASIK patients
• Similar pattern to all models, as predicted!

Apex Fit of Pre and Post-Op Surfaces

• Post-op surface fits “below” pre-op for all models

Apex Fit of Pre and Post-Op Surfaces

• Average difference map of 2380 LASIK patients
• Similar to all!

Peripheral Fit of Pre and Post-Op Surfaces

• If forward movement, post-op should fit “above” pre-op
• If backward movement, post-op should fit “below” pre-op in periphery
Peripheral Fit of Pre and Post-Op Surfaces

- Average difference map of 2380 LASIK patients
- Consistent with backward movement model!

Posterior Surface

Patient Data is consistent with Peripheral Inward Movement, NOT outward central movement!!

Stable Remodeling!!!!!!!!

Misconceptions

- Topography vs Wavefront
- Elevation vs Curvature
- Axial vs Tangential Curvature
- Power vs Curvature
- “Bumps” on a Posterior Power Map?

Curvature

Axial vs Tangential: Normal Eye

Keratoconus

Axial
Tangential
PRK

Axial vs Tangential

Decentered Ablation?

Axial vs Tangential

Contact Lens Warpage

Axial vs Tangential

Axial (A₁ and A₂) vs Tangential (C₁ and C₂)

Reference Axis

The location of the greatest curvature is more stable on a Tangential map, as the Center of the Map is moved.
Axial vs Tangential Curvature

- Advantages
 - Axial: global indication of corneal shape
 - Tangential: details of corneal shape

- Disadvantages
 - Axial: miss important details
 - Tangential: noisy

NEITHER ONE IS POWER!!

Summary

- Topography is shape and Wavefront is function
- High resolution is required to calculate curvature from elevation
- Tangential Curvature represents local shape and Axial Curvature represents global shape.
- Refractive or Optical Power represents image formation and curvature labeled in diopters is NOT power.
- A red spot on the posterior surface does NOT always mean ectasia.
- The terms “Oblate” and “Prolate” are not meaningful on a post-LASIK cornea
- BE CAREFUL when you read the literature!